M.C.E. Society's Abeda Inamdar Senior College, Pune

(Autonomous)

Syllabus under Autonomy
F.Y. B. Sc.
Electronic Science
(For Computer Science)

Academic Year (2021–2022)

(Under the faculty of Science and Technology)

Title of the Course: F.Y. B. Sc. Electronics of B. Sc.(Computer Science) Preamble of the Syllabus:

The systematic and planned curricula for first year and second year Electronics shall motivate and encourage the students for pursuing higher studies in Electronics and Computer and for becoming an entrepreneur.

Introduction:

At first year of under-graduation: The basic topics related to the fundamentals of electronics are covered. Since electronics is an inherent part of technological advancements, the practical course is intended to achieve the basic skills required for computer science students.

At second year under-graduation: The level of the theory and practical courses shall be one step ahead of the first year B.Sc. Courses based on content of first year shall be introduced. Concepts of Communication, embedded system, Internet of things will be introduced at this stage.

Objectives:

- To provide knowledge of technological and practical aspects of electronics.
- To familiarize with current and recent technological developments.
- To enrich knowledge through activities such as industrial visits, seminars, projects etc.
- To train students in skills related to computer industry and market.
- To create foundation for research and development in Electronics/ Computer.
- To develop analytical abilities towards real world problems
- To help students to build-up a progressive and successful career.

Syllabus under Autonomy F.Y. B. Sc. Electronic Science (For Computer Science)

Titles of Papers and Scheme of Study

	Paper / subject code	Paper		er Title Credits	Lectures/ practical per week	Evaluation		
SEM			Paper Title			C.A.	U.E.	Total
	21SBCS111E	I	Principles of Analog Electronics	2	2	20	30	50
I	21SBCS112E	II	Principles of Digital Electronics	2	2	20	30	50
	21SBCS113E	III	Electronics Lab-IA	1.5	3	20	30	50
	21SBCS121E	I	Instrumentation System	2	2	20	30	50
II	21SBCS122E	II	Basics of Computer Organization	2	2	20	30	50
	21SBCS123E	III	Electronics Lab-IB	1.5	3	20	30	50

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Principles of Analog Electronics
Course Code	21SBCS111E
Semester	I
No. of Credits	2 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	The course has been designed to introduce fundamental principles of
	analog electronics commonly used in engineering, IT and Industries
2	Aim is to identify the functions of different electronic components.
3	To understand the concepts, working principles and key applications of different semiconductor devices.
4	To study elementary electronic circuits

Sr. No.	Learning Outcome			
1.	To acquire the knowledge about the characteristics and working			
	principles of semiconductor diodes, Bipolar Junction Transistor, Field			
	Effect Transistor and Uni Junction Transistor.			
2.	Know about different rectifier circuits and their use in electronics and			
	communication circuits.			
3.	Design the different oscillator circuits for various frequencies			

Unit	Title with Contents	No. of
No		Lectures
Unit I	Semiconductor Diodes	10
	1. Semiconductors and its types	1
	2. P and N type semiconductors	1
	3. Formation of PN junction diode and it's working	1
	4. Forward and Reverse bias characteristics of diode	1
	5. Zener diode:	2
	i) Working principle	
	ii) Breakdown mechanism	
	iii) Characteristics	
	6. Working principle of Light Emitting Diode	1
	7. Working principle of photo diode	1
	8. Study of Opt-coupler	1
	9. Solar cell working principle and characteristics	1
Unit II	Bipolar Junction Transistor (BJT)	8
	1. Bipolar Junction Transistor (BJT)	3
	i) Symbol	
	ii) Types of BJTs	
	iii) Construction of BJTs	
	iv) Working principle of BJTs	
	 Transistor amplifier configurations - CB, CC (only concept), 	1
	3. CE configuration: Input and Output characteristics,	1
	4. Concept of Biasing: Potential Divider bias	1
	5. Application of BJT:	2
	i) Transistor as amplifier (Concept of Gain and Bandwidth	
	expected)	
	ii) Transistor as a switch.	
Unit III	FET and UJT Transistors	7
	1. Symbol, types, construction, working principle	4
	2. I-V characteristics	1
	3. Specifications parameters.	2

Unit IV	POWER SUPPLY	6
	1 Block Diagram of Regulated Power Supply	1
	2 Rectifiers (half wave, full wave, and Bridge) with filter	1
	circuit	
	3 Use of Zener Diode as a Voltage Regulator	1
	4 IC 78XX and 79XX as regulator	1
	5 SMPS: Block Diagram and explanation	1
	6 UPS: Block diagram and explanation	1
Unit V	OSCILLATORS	5
	1. Barkhauson Criteria	1
	2. Low frequency Wien-bridge oscillator and problems	2
	3. High frequency crystal oscillator	1
	4. IC 555 as Astable multivibrator used as square wave	1
	generator / clock	

Sr. No.	Author	Title of the Book	Publication
1	Floyd T.M., Jain R.P	Electronic Devices and Circuits	Prentice-Hall of India
			Pvt. Ltd
2	A.P. Malvino	Electronics Principles	Tata McGraw Hill
3	B.L. Thereja	Basic Electronics	S. Chand Publication
4	V.K. Mehta	Principle of Electronics	S. Chand Publication
5	Boylestad &	Electronic Devices And Circuits	Pearson India
	Nashelsky's	Theory	

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Principles of Digital Electronics
Course Code	21SBCS112E
Semester	I
No. of Credits	2 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get familiar with concepts of digital electronics
2	To learn number systems and their representation
3	To understand basic logic gates, Boolean algebra and K-maps
4	To study arithmetic circuits and combinational circuits

Sr. No.	Learning Outcome
1.	The students will learn number systems and their inter-conversion
	between them.
2.	Using the Boolean algebra and logic circuits using Karnaugh's map
	students will be able to simplify the Boolean equations.
3.	The students will be able to design logic circuits using arithmetic
	circuits, combinational circuits and sequential circuits
4.	The students will acquire the basic knowledge of digital logic levels
	and application of knowledge to understand digital electronics circuits.
5.	Analyze, design and implement combinational logic circuits

Unit No	Title with Contents	No. of Lectures
Unit I	Number Systems and Digital codes	10
	Introduction to Decimal, Binary and Hexadecimal Num	ber 3
	Systems And their inter- conversions,	
	2. Binary addition	1
	3. Binary subtraction using 2's complement	1
	4. Binary Coded Decimal Number	1
	5. Gray Codes: Gray to Binary and Binary to Gray	2
	conversion,	
	6. Alphanumeric representation in ASCII codes.	1
	7. Parity bits	1
Unit II	Logic gates and Boolean Algebra	14
	1. Logic gates (NOT, AND,OR,NAND,NOR,XOR gate)	With 2
	their symbol, Boolean Equation and truth table, Uni	versal
	gates	
	2. Boolean algebra rules and Boolean Laws	2
	3. De Morgan's theorem	1
	4. Simplifications of Logic equations using Boolean al	lgebra 3
	rules.	
	5. Introduction to Karnaugh Map,	1
	6. Problems based on the same (Upto 4 variables)	3
	7. Digital Designing using K Map for	2
	i) Gray to Binary Conversion	
	ii) Binary to Gray conversion	
Unit III	Combinational Circuits	12
	1. Introduction	1
	2. Half adder and full adder, and Parallel Adder	1
	3. 4-Bit Universal adder/ Subtractor	1
	4. Applications of Ex-OR gates as parity checker and	. 1
	generator	
	5. Study of Multiplexer (4:1) and Demultiplexer (1:4)) 1
	6. Encoders - Decimal/ BCD to binary	1

7. 3X4 Matrix Keyboard Encoder	1
8. Priority Encoder(74148)	1
9. Decoder- BCD to Seven Segment Decoder	1
10. Study of IC 74138	1
11. Study of IC 7447	1
12. Digital comparator	1

Sr. No.	Author	Title of the Book	Publication
1	Floyd T.M., Jain R.P	Digital Fundamentals	Pearson Education
2	Malvino and Leach	Digital Principles and Applications	Tata McGraw-Hill
3	M. Morris Mano	Digital Design -3rdEdition	Prentice-Hall of India Pvt. Ltd
4	Ronald J. Tocci	Digital Systems-Principles and Applications	Prentice-Hall of India Pvt. Ltd
5	Anand Kumar	Fundamentals of Digital Circuits	Prentice-Hall of India Pvt. Ltd

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science (CBCS – Autonomy 21 Pattern

Course/ Paper Title	Electronics Laboratory-IA
Course Code	21SBCS113E
Semester	I
No. of Credits	2 (1 Unit equivalent to 1 Credit)

List of Practical (Minimum 08, 4 from each group)

Sr. No.	Title of Experiment		
	Group-A		
1	Study of I-V characteristics of Diode.		
2	Study of breakdown characteristics and voltage regulation action of Zener diode.		
3	Study of half wave, full wave and bridge rectifier circuit (with and without capacitor filters).		
4	Study of Bipolar Junction Transistor as a Switch.		
5	Study of Single stage RC coupled CE transistor Amplifier (Gain/ Bandwidth).		
6	Study of output and transfer characteristics of JFET.		
7	Study of IC 555 as an Astable Multivibrator.		
	Group-B		
1	Study of Logic Gates (Verification of Truth tables)		
2	Study of Binary to Gray & Gray to Binary Converter (K- Map based design).		
3	Study of Half Adder and Full Adder using Logic Gates.		
4	Use of Ex-OR as a 4-bit Parity Checker and Generator.		
5	Study of Decimal to BCD (Binary) Converter using Gates.		
6	Study of Multiplexer and Demultiplexer (4:1 & 1:4).		
7	Study of BCD to Seven Segment Display using IC 74138 and IC 7447		
8	Study of IC 74148		

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Instrumentation System
Course Code	21SBCS121E
Semester	II
No. of Credits	2 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To provide basic knowledge about the various sensors and their application in Instrumentation System.
2	To study Instrumentation System
3	To study various blocks of Instrumentation System
4	To study types of data convertors.
5	To study OP-AMP characteristics and its application

Sr. No.	Learning Outcome
1.	The students will be familiar with various types of sensors used in
	electronic circuits
2.	Students will be able to explain principle of operation for various
	sensors
3.	Students will be able to describe functional blocks of
	Instrumentation System
4.	Application of OP-AMP in electronic circuits to design arithmetic
	circuits, Oscillators and as Signal Conditioning Circuit.

Unit No		Title with Contents	No. of Lectures
Unit I	DATA	A CONVERTERS	6
	1.	Need of Digital to Analog converters	3
		i) Parameters	
		ii) Types: Weighted Resistive Type and R-2R ladder	
		Type DAC	
	2.	Need of Analog to Digital converters	3
		i) Parameters	
		ii) Types: Flash ADC, Counter Type ADC,	
		Successive approximation ADC.	
Unit II	Introd	luction to Instrumentation System	6
	1.	Block diagram of Instrumentation system	1
	2.	Definition of sensor, transducer and Actuators	1
	3.	Classification of sensors: Active and passive sensors.	1
	4.	Specifications of sensors: Accuracy, range, linearity,	1
		sensitivity, resolution, reproducibility	
	5.	Block diagram of Smart Instrumentation system	2
Unit III	Senso	rs and Actuators	13
	1.	Types of Sensors	9
		i) Temperature sensor (Thermistor, LM-35), DHT11	
		Sensor	
		ii) Optical sensor (LDR),	
		iii) Passive Infrared sensor (PIR),	
		iv) Tilt Sensor,	
		v) Ultrasonic sensor	
		vi) Motion sensor	
		vii) Image Sensor	
		viii) Film Sensors	
		ix) Nano Sensors	
	2.	Actuators : DC Motor, Stepper motor	2
	3.	Concept of smart sensor	2

Unit IV	OPAMP as signal Conditioner		11
	1	Concept, block diagram of Op amp	1
	2	Basic parameters (ideal and practical): input and output	1
		impedance, bandwidth, differential and common mode gain,	
		CMRR, slew rate,	
	3	IC741/ LM324	1
	4	Concept of virtual ground	1
	5	Applications of Op amp	7
		i) Inverting and Non-Inverting amplifier	
		ii) Unity gain follower	
		iii) OpAmps as adder, Subtractor,	
		iv) Op amp as current to voltage and voltage to current	
		convertor and Voltage to frequency converter	
		v) Op amp as comparator	
		vi) Problems based on above Op Amp applications	

Sr. No.	Author	Title of the Book	Publication
1	Prof A.D. Shaligram	Sensors and Transducers	Chinttan Publications
2	D. Patranabis	Sensors and Transducers	Prentice-Hall of India Pvt. Ltd
3	Ramakant Gaykwad	Op Amp and Linear Integrated Circuits	Pearson
4	V.K. Mehta	Principle of Electronics	S. Chand Publication

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Basics of Computer Organization
Course Code	21SBCS122E
Semester	II
No. of Credits	2 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get familiar with sequential circuits
2	To study Basic computer Organization
3	To study Memory architecture
4	To get familiar digital sequential circuits

Sr. No.	Learning Outcome
1.	The students will be familiar with sequential circuits.
2.	The students will understand the basics of Computer Organization
3.	The students will be able to classify semiconductor memories

Unit	Title with Contents	No. of
No		Lectures
Unit I	Flip Flops	7
	1. RS Flip Flop using NAND gate	2
	2. Clocked RS Flip Flop	1
	3. D Latch	1
	4. J-K Flip Flop and Master Slave J-K Flip Flops	2
	5. T flip flop	1
Unit II	Shift registers and Counters	15
	1. Introduction	1
	2. Types of Shift registers -	4
	i) Serial In Serial Out (SISO) Register	
	ii) Serial In Parallel Out (SIPO) Register	
	iii) Parallel In Parallel Out (PIPO) Register	
	iv) Parallel In Serial Out (PISO) Register	
	3. Ring Counter using D Flip flop	1
	4. Counters -Synchronous and Asynchronous type	2
	5. 3 -bit Up, Down and Up - Down counter	2
	6. Concept of modulus Counters (Timing Diagram of all above	2
	are expected)	
	7. Study IC 7490 with its internal Block Diagram and examples	2
Unit III	Basics of Computer System	8
	1 Introduction to Basic Computer Organization	1
	2 Concept of Address Bus, Data Bus, Control Bus.	1
	3 CPU Block Diagram and Explanation of each block	1
	4 Register based CPU organization	1
	5 Concept of Stack & its organization	1
	6 I/O organization:	3
	i) Need of interface	
	ii) Block diagram of general I/O interface	
	iii) Working	

Unit IV	Memory Organization	6
	Memory Architecture	1
	2. Memory hierarchy	1
	3. Types of Memories	2
	4. Role of Cache memory	1
	5. Virtual Memory	1

Sr. No.	Author	Title of the Book	Publication
1	Floyd T.M., Jain R.P	Digital Fundamentals	Pearson Education
2	Jain R.P	Digital Electronics	Tata McGraw Hill
3	M. Morris Mano	Digital Logic and Computer Design	Pearson Education
4	William Stallings	Computer Organization and Architecture	Pearson Education
5	Computer System Architecture	Computer System Architecture	Pearson Education

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Electronics Laboratory-I
Course Code	21SBCS113E
Semester	IA
No. of Credits	2 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	The electronics laboratory is the gateway of the electronics world.
	Hence, the practical course is intended to achieve the basic skills
	required for computer science students.
2	To get familiar with the various electronics instruments & components
	which basically equip them to design and test circuits in near future
3	To understand the concepts and working of various electronics devices
	like diodes, transistors, rectifier circuits, amplifiers, logic gates,
	combinational and sequential circuits.
4	To study various electronic circuits so that the students are able to
	understand the practical aspects of basic electronics theory.

Sr. No.	Learning Outcome
1.	Hence after performing Preparatory Experiments, the students will be
	able to use various instruments
2.	Will be able to correlate the theoretical concepts of various electronics
	circuits with practical feasibility; thereby students can learn different
	electronics circuits and its electrical characteristics in a better way.
3.	Theoretical knowledge of electronic devices will be justified after
	performing practical.

The practical course consists of 10 experiments. After studying the theory and practical student can design and develop Hobby projects.

- The practical course consists of 10 experiments out of which two will be preparatory experiments.
- These will be evaluated in an oral examination for 15% marks at internal and external semester examination.
- Each Practical batch will have maximum 15 students.

Preparatory Experiments (Minimum 2/3)

1. Identification of Components (Passive and Active) /Tools

- Minimum 10 different types of components must be given
- Identification based on visual inspection / data sheets be carried out

2. Use of Digital Multimeter

- Measurement of AC/DC voltage and Current on different ranges
- Measurement of R &C
- Testing of Diodes &Transistors
- Measurement of β.
- Use of Multimeter in measurement of Variation of Resistance of LDR.
- Thermistor

3. Study of Signal Generator & CRO

- Understand how to use Signal Generator, CRO
- Study of front panel controls of both
- Measurement of amplitude and frequency of Sine/Square waveform
- Demonstrate the use of Component testing facility

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Electronics Laboratory-IB
Course Code	21SBCS123E
Semester	II
No. of Credits	2 (1 Unit equivalent to 1 Credit)

List of Practical (Minimum 08, 4 from each group)

Title of Experiment		
Group-A		
To study temperature sensor LM 35		
Use of LDR to control light intensity		
Study of PIR and tilt sensor.		
Use of OPAMP as comparator and its use in DC motor driving.		
Build and test Inverting and Non-Inverting amplifier using OPAMP.		
Build and test adder and Subtractor circuits using OPAMP.		
Build and test voltage to frequency converter		
Group-B		
Study of RS, JK and D flip flops using NAND gates		
Study of Four bit ALU		
Study of asynchronous Up/Down Counter		
Study of IC 7490 circuit configurations.		
Study of 4-bit SISO Shift register and its use as Ring Counter		
Study of 4-Bit R-2R Ladder Network type of DAC.		
Study of 3-bit Flash ADC		